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The problem of optimal response [l, 21 with nonsmooth (generally speaking, 

nonfunctional) constraints imposed on the state variables is considered. This 
problem is used to illustrate the method of proving the necessary conditionsof 

optimality in the problems of optimal control with phase constraints, based on 

constructive approximation of the initial problem with constraints by a sequence 

of problems of optimal control with constraint-free state variables. The varia- 

tional analysis of the approximating problems is carried out by means of a pure- 
ly algebraic method involving the formulas for the incremental growth of a func- 

tional [3, 41 and the theorems of separability of convex sets is not used. 
Using a passage to the limit, the convergence of the approximating problems 

to the initial problem with constraints is proved, and for general assumptions 
the necessary conditions of optimality resembling the Pontriagin maximumprin- 

ciple [l] are derived for the generalized solutions of the initial problem. The 
conditions of transversality are expressed, in the case of nonsmooth (nonfunc- 
tional) constraints by a novel concept of a cone conjugate to an arbitrary closed 
set of a finite-dimensional space. The concept generalizes the usual notions 
of the normal and the normal cone for the cases of smooth and convex mani- 

folds. 

1. Statement of tho problom. We consider a general problem of the time 

optimal response for systems of ordinary differential equations in the class of measurable 
controls u (t) and absolutely continuous trajectories z (t), ts < t < t, 

5’ = f (X, u, t), X = (Xl, . . ., Xn)’ E Rn ( 1.1) 
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u (t) E u (t) c Q, to < t 4 4 (1.2) 

(x (GA x W> = G CT Rm (1.3) 

I ==: 
t1 - t, 3 inf (1.4) 

where the prime denotes transposition (3 is a column vector),and the time t, is assumed 
fixed for the sake of simplicity, The constraints imposed on the state variables (1.3) are 
defined using an arbitrary closed set G c R sn which may, in particular, have the form 

{sE Rzn : qi (z) < 0, i = 1, s s s, I; hi (2) = 0, 1 = 9, . s e) p} 

where Qi (z) are arbitrary functions semi-continuous from below and hj (z) are arbit- 
rary continuous functions. 

In what follows, we shall assume that one of the projections of the set G on R” is 
bounded and, that the following general conditions imposed on the parameters of the prob- 
lem(l.l)-(1.4) all hold: 

a) the space $2 is homeomorphic to a complete separable metric space, and the 
set rt~ = {(u, 1) E: S-2 X [to, Tl: u E U (t)} is analytic (mod 0) [S] for some T, 
00 > T > t,; 

b) the functions f (z, u, t) and LJf (5, U, t) / 8;~: are continuous in 2, B-mea- 
surable (mod 0) in (u, t) (this is fulfilled automatically if they are cont~u~sin(~, U) 
and Lebesgue measurable in t) and satisfy the inequalities 

where g (s) and g, (s) are continuous on. [O, co)* p (t) and f+ (t) are summabbon 
[to, 2’1 and g (a) = 0 (s) as S-P oo; 

c) the set R (x, t) = {r = (rl, r2) : r, = f (ST, U, t), r, = af (x, u, tl tax, 
u E U (t) } is closed in the space Bn(n+l).* 

The condition (b) guarantees the uniform boundedness of the set of admissible trajec- 
tories of the problem (1.1) - (1.4). Other general conditions of this type can be found 
in e. g. CS]. 

We shall call the generalized solution of the problem (1.1) - (1.4) the optimal set 
{x0 (t)*%* (0, Ui” (0, i = 1, . . ., n + 1) in the extended [?I problem of minimi- 
zing the functional (1.4)“with the constraints imposed on the state variables (X.3) given 
by the following relations: 

(1*5) 

2. Tho rpproxlmrting problem,, Letusdenote by I? = tIo - to the 
minimum value of the functional (1.4) in the extended problem (1.3) - (1.6). This 
value is attained under the conditions (a) - (c), and coincides with the m~mum value 
of the functional in the initial problem (1.1) - (1.4) for a wide class of problems cor- 
rect in the extended form [5, 81. Let us investigate an arbitrary numerical sequence 

{rlk), k = I,% - - *, satisfying the conditions rlk * tlo, tJ& < tlo, k = 1, 2, . , . 
Such a sequence can be effectively constructed using the discrete (finite-difference) 
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approximations to the problems (1.1) - (1.4) correct in the extended form (the conver- 

gence of the discrete approximations to the ~nction~l is proved for similar problems in (*) . 

We introduce the following functional for each positive value of k : 

If, = @ (5 (GJ), 5 (bd = P (5 (to?, z h); G) -+ id, k = i,2, . . . (2.1) 

- if) (3 @,) - ii’) + 

where p .is the distance of the boundary point zk = (Z (to), x (trk)) from the set G. 

Let us investigate the sequence of the approximating problems of minimizing the func- 

tional (2.1) on the collection of sets {X (t), ar (t), ui (t), i = 1, . . . , n. -k I}, 
satisfying the relations (1.5) and (1.6) with t, = flli, k = 1, 2, . . . . The approxi- 

mating problem of optimal control (1.5), (1,6), (2.1) represents, for every k = 1, 2, . . 
a problem of minimizing a nonsmooth Mayer-type functional without additional con- 

straints imposed on the state variables. When the conditions (a) - (c) hold, the problems 

(1.5), (1.6), (2.1) always have solutions [8] in the form of the optimal sets (x~” (t), 
aik” (1), %ka (t), i = 1, . . ., II + I}, hi = 1, 2, . . . . A theorem which fol- 
lows, defines more exactly the character of the approximation of the initial problem with 

constraints imposed on the state variables by the problems (1.5), (l-6), (2.1). 

Theorem 2. 1. Let the assumptions (a) -(c) hold. Then the set of trajectories 

{a$’ (Q}, t, < t < tlh., k = 1, 2, . . . optimal in the problems (1.5), (1.6), (2.1) 
and continuously extended to the whole of the interval It,, t,‘], is relatively compact 

in the space C ft,, t13] and its limit points represent the optimal trajectories of the 

widened problem (1.3) - (1.6) . Moreover, a number c > 0 can be found such, that the 

follo~ng inequality holds for all Is: = 1, 2, . . . : f,~ 

Pro of. Consider an arbitrary sequence of trajectories {zip (t) ), k _I_ 1, 2, . . . , 
optimal in the problems (1.5), (1.6), (2.1) and continuously extended to the interval 

It,, tlo 1. BY virtue of the condition (b) we can, following [9], find a number r > 0 
such that jl%o(+Q-, 1,< t< t;, k=1,2 >,.. 

Let us write the inequality 

l~~iPtrl)-~~(r2)//-i-C~~~(I)dl (2.3) 

Zr, z,E[t,,t,‘], Zr<G, k==l,:! ,... ST* C=,f”,pg(\IX//) 

We see from it that the sequence {sko (2) ), to < t < tlo, Ic~~~I, 2, . . . . is con- 

tinuous in the same degree. Using the Arzela- Ascoli theorem [lo], we can separate from 
this sequence a subsequence, which converges uniformly on It,,, t,‘] to some absolutely 

continuous (by virtue of (2.3)) function ~!‘(t)~ to < t < tlo. Using the fact that the set 
of admissible velocities in the extended problem is convex and the theorem of measur- 

able sampling [6, 81, we can find measurable functions ai”( ui”(t), IO < t < tlO, 

*) Mor~khovich, B. Sh. Convergence of the discrete appr~imations in the problems of 
optimal control. IV-th Mathematical Conference of the Belorussian F&public, Conf, Re- 
ports, pt. 1, Minsk, 1975. 
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i=l, 2, . . . such that the set {x”(t), ai (t), Ui” (i), i = 1, . . ., n $ I}, 
to < t < tlo satisfies the relations (1.5) and (1.6). The proof of the theorem will now 

follow fully from the inequality (2.2). The validity of this inequality can be shown by 

remarking [8] that an optimal trajectory z*(t), t, < t < tlo exists in the problem 

(1.3) - (1.6). for which p (x* (to), z* (tI”); G) = 0 and for which (2.3) also holds 
when r2 = t:, ‘cl = trk, .A = 1, 2, . . . . Since the trajectories z:(t), t, < t < 
tlk are optimal, we can write in the problems (1.5), (1.6), (2. l), k = 1, 2, . . . . 

I' (XL (to), 5; (b); G) < P (x* (to), cc* (t,,): G) < 11 x* (tll, ) - z* (~1") 11 

The required inequality follows from the above expression, Theorem 2.1 is proved. 
From the above theorem it follows that the process of constructing and solving the ap- 

proximating problems (1.5), (1.6), (2. 1) can be regarded as a constructive algorithm for 

obtaining an approximate solution of the extended problem (and of the initial problem, 
provided that the extended problem is still correct) with arbitrary constraints of the type 

(1.3). The inequality (2.2) characterizes in this case the degree of approximation of the 

constraints of the type (1.3), depending on the rate of convergence of 2,, -+ t,‘. 

3, The maximum principle in tha approximating problrmr. We 
derive the necessary conditions of optimality of the first order in the approximatingprob- 

lems (1.5), (1.6), (2.1) using the algebraic constructions of the method of incremental 

growth of the functional [3, 41 and the results of the theorem of multivalued measurable 

mappings [6, 81. 
We denote by ml, the minimum value of the functional in the problem (1.5), (1.6), 

(2.1). This value is always positive by virtue of the choice of the sequence {tlh.}, h- = 

1, 2, . . . . Let us introduce the Hamilton function H (X, I/J, U, t) = ‘$‘f (5, U, r> 
for the system (1.1) and consider the following equation for the conjugate variables cor- 

responding to (1.5) : ?I+1 
l/l* = - izl ai dff (5, $3 ui, 0 / L (3.1) 

Theorem 3. 1. Let the conditions (a) and (b) hold. Then for every set {xk” (t), 

aic (t), uilp (t), i = 1, . . . , n -I- I}, 4, < t < f,k optimal in(1.5),(1.6),(2.1) 
and for almost every t E Tik= {tE [to, tlkj,aiko (t) # 0) the following maxi- 
mum principle holds: 

H (z,"(t),'h?% %c(% t, = guSt, H@,"(t), 'h?(t)&, t), i=i,...,n+i 13.q 

where ‘hi’ (t>, t, < t < t,k is the corresponding absolutely continuous solution of the 

system (3.1) with the boundary conditions 

+k” (to) = .$(5kO(tO) - !!ko), +;(hk) = +(&' - x;(tlk)) (3.3) 

where _$!k = (ykO, ykl) is a vector belonging to the set 

Mk = bk = b;, yk? E G: p (z; (to), 5; @&; r/;s h’) = 
f’ (zk” (to), Xko (&c); Gl 

PrOOf. The set {a&” (t), aik” (t), &k” (t), i = 1, . . ., n + I}, t, < t < tlk 
optimal in the problem (1.5),(1.6),(2.1) will be optimal in the problem of minimizing 
the Mayer-type functional 
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Jh. = F tx (to), x thk)) = [ts tto) - Yk”>’ tx tto) - yk”) + 

(X (tlk) - yk’)’ (x (tlk) - yk’)]‘:’ --f inf 

(3.4) 

with a smooth function F (cc”, a?), (z”, xc”) Ef G on the trajectories of the system (1.5), 
(1,6) under an arbitrary choice of the vector Yk = (yk’, &‘) e M,. Using the method 
of increments [3, 41, we can write the following formula for an increment of the function- 

al in the problem (1.5), (1.6), (3.4) : 

AJk = (dF @k” (to)) / &xc” - $; (to))’ Ax (t,) - 
‘lk n+l 

SD ai tt) H (Xk’ tt), ‘$k” ct), lLi tt), t, - 
to i=l 

(3.5) 

:to i=l 

nS1 

to 

Here the set {Z (t), ai (r), Ui (t), i = 1, . . ., n + I}, t, < t < tak satisfiesthe 

relations (1. 5) and (1. 6), Ax (t) -L r (t) - Xk” (t) and the function &’ (t) satisfies 
Eq. (3.1) with the right-hand side boundary conditions of (3.2) along the optimal set 

{xc (t), aiko (t), kko(t)Y i = I, . . -, n -I- I>, to < t < tlk. 
We shall prove that the left-hand side boundary condition of (3.3) also holds for the 

function gko (t) . Assume the opposite, i.e. 

+-- (Jko (to) - Yko) - $k” @a) = dF (x; (to)) / kc” - 1c-‘k” (to) = b # 0 (3.6) 

Consider the solution 51( (t), t, < t < tlk of the system (1.5) with the initial con- 
dition xk (to) = zko (to) + bc corresponding to the controlling set {aiko (t), uik’ (t), 
i = 1, . . ., n + 1). By virtue of the condition (b) and the Bellman-Gronwall lem- 

ma [4], the following inequality holds: 

l~lh(t)-XkO(t)lj~E(IbIIex~(c, ‘fhctjdt) 7 cl d t < tlk 

c1 = ,E,FT 671 II 5 II 

From (3.5) we have 
AJk = E 11 b [I2 + 0 b) (3.7) 

Having chosen a sufficiently small e in (3.7), we arrive at a contradiction with the opti- 

mafity on the set {a+” (t), ajko (t), udko (t), i = 1, . . ., n + I}, to < t < tlk 
in the problem (1.5), (1.6),(3.4). Thus the assumption (3.6) is invalid and the function 
$k” (t) satisfies the boundary conditions (3.3). 

The following relation holds for the optimal set {tk” (t), aik” (t), %1(3 (t), i = 1* 
. . ., n + 1) and for almost every t E It,, tlkj : 
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(3.6) 

n-f-1 

nf1 

(2 Ui = 1, Cti > 0, Ui E U (t), i zz= 1,. . ., T2 + 1 
i=1 

where the operation sup is performed all (a,, 2~~) satisfying the conditions enclosed 

within the parentheses. 

Assuming the opposite and using the theorems of measurable sampling, we find the 

measurable set T c [to, tik], mes 2’ = 6 > 0 , and the measurable functions oik (r), 
uik (t), t E T, i = 1, . . ., n + 1, for which 

n+r 
ail,(t)>@9 Uik(l)EU(t)Y 

and the inequality 

(3.9) 

holds. 
Let 6 E T belonb LO the set of points of approximative continuity [lo] of the func- 

tion 
n+i 

h,(t) = 3 ‘ik (r) “(“k’ (t)~ !)kO (t)? ‘it (t)S r) - 
i=l 

which, by virtue of the Denjou theorem [lo] has a complete measure on T. Consider a 

family of controls {IX& (t), Uikc (t)., i = 1, . . ., n + i}, to G t d hk7 8 > 0, admissi- 
ble in the problem (1.5), (1.6), (3.4) and obtained by almost impulsive variation of the 

optimal control {oiko (t), uik 0 (t), i = 1, . . ., n + I}, to < t < tik in the interval zk’ 

(to) = “ho (to) 

(“ika (t), “iCE (t))t = 
@i, tt))t “ik (t), t e T, 

taikO tt)* ‘ik” (t)), t E [~IJY tik]\Tc 
i = 1,. . ,, n +i (3. IO) 

Let T, = [O, 8 + a) n T be a trajectory of the system (1.5) with the initial condition 

.T,<~ (r), t, <t 6 tikcorresponding to the control (3.10). It can easily be shown that 

t 

11 cckL (t) - rKo (t) [I f 2ecp (t) exp 
( 
c, ik pi(t) dt 

1 
, 9 < t < tlk (3.11) 

to 

By virtue of (3.11) and the choice of the point 6 , the formula (3.5) defining the func- 

tional increments yields,for oi (t) = aikE( ui (t) = uibc(t), t = 1, . . . ., n. f 1, to < 
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n-t1 

Uik (et, e) - =jj ai,v3) H (~,w. Q,” w. uiko feb e] f * f&f 
i=l 

which at fairly small E contradicts the optimal set (Q” (11, aiko (t), %* (t)* i = 1, 
. . ., n -i- f), to Q t f tlk in the problem (1.5),(1,6),(3.4), Thus the inequality (3.9) 
is invalid, and this proves the validity of (3.8). 

To complete the proof of the theorem, we must show that (3.8) implies that the con- 
dition of m~imum(3.2) holds for almost all t E T, = {t E It,, tIk] : aiko (t) & 

01. 
We assume that (3.2) does not hold for some t E Tir, i E {I, . . ., n + l}. 

Then, using the conditions governing the weighing coefficients ai, i = 1, . . . , n + 1, 
we can write 

&T”;., izl &” tzko (% vk*@), Uir t) 

This contradicts~3.‘8) and thus completes the proof of Theorem 3.1. 

4. Confugrtr con88 and genzrolized dzrfvatfvai, ,In order to formu- 
late the ~ndamental result, we introduce the concept of a cone Iio (e) conjugated at 
the point e E G to an arbitrary nonempty closed set G of a finite-dimensional space. 
We also introduce the associated concept of a generalized derivative (D -derivative) 
& {x) for an arbitrary function cp (z) of a finite number of real variables, semi-continuous 
from below. We consider the following sets for any point s of a finite-dimensional .space : 

M (s) = (z E G : p (s, z) -5 p (s, G)}, 2’ (4 = {P : P = (4.1) 

y (s - a), se M (a), Y>OI 

We shall call the cone Kc; (e) conjugated at the point e E G to the set G , a closed 
cone of the form 

KG(e) = n kj p(s) 
6x Iis--eiKS 

(4.2) 

At the point s = e , the cone (4.2) is an envelope of the cone .&’ (s) , ~~-continuous 
from above in the Kuratovski [S] sense. It can be shown that for smooth and convex sets 
G the concept of a conjugate cone (4.2) can be reduced, respectively, to the usual con- 
cepts of a normal, and a normal cone in the sense of the convex analysis [XI], The nor- 
mal cone becomes, in the Clarke’s sense [IZ], the convex closure of the cone lilo (e). 

Using the concept of a conjugate cone, we shall now define the D -derivative for an 
arbitrary function cp (z),. z E R”, semi-continuous from below and assuming values 
on the extended straight line (- 00, 00 1 J&t us denote by 15 = epi cp = ((5, p) S 
R”+’ . . p ;” Q, (a!)} the supergraph of the function cp (z) which is a closed set in R”+‘. 

We shall call the D-derivative &p (2) of the function ‘p : R” + (-- w, 001 at 
the point 2, cp (x) < co semi-continuous from below, a set of the form 

Dcp (x) = (V E R”: (a, -1) = & @, cp (2))) (4.3) 

where KE (5, cp (2)) is the cone (4.2) conjugated to the supergraph I? = epi v C R”+l 
at the point (2, cp (2)). 

Thus the D -derivative of the function semi-continuous from below on R”, is a multi- 
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valued mapping of the space R* onto the set of its closed subsets, In the case of smooth 
functions cp (z) , the set (4.3) consists of a single point and the meaning of the D -deri- 
vative becomes that of the classical analysis, If cp (a) is convex on R”, then the D - 
derivative (4.3) coincides with the subdifferential dr&z) in the sense of the convex ana- 
lysis [ll]. The generalized Clarke’s gradient [12] can be obtained using the construction 
(4.2) in which the conjugate cone KE (2, cp (5)) is replaced by its convex closure, i. e. 
by the cone normal in the Clarke’s sense. 

We note that the sets KG (e) and Dq (2) can become convex even in the simplest 
cases. For example,for cp (z) = - 1 2’1, t E R , we have Dq (0) = (-1; I}. 

6, Tha fundamantal rafiult, We shall formulate and prove the fundamental 
result of this paper, namely, the maximum principle in the problem of the time optimal 
response with nonsmooth (nonfunctional) constraints. 

Theorem 5. 1. Let the assumptions (a) - (c) hold, Then the problem (l.l)-( 1.4) 
has no generalized solution {a~” (t), ccio (t), uio (t), i = 1, . . ., n + I}, t, < t < 
t 1o, which would satisfy, for almost every t E [to, tlo] the maximum principle 

H (Jp ($9” (0, Ui” (t), r) =w~~~t~ (x0 (t), $0 (09 n7 r)7 i = 19.e~ 77, + I (5.1) 

where 9” (t), t, < t < t,” is the corresponding, absolutely continuous trajectory afthe 
system (3.1) with the boundary conditions (transversality conditions) 

(q” (to), -9” (tI“)) = KG (ho, z” (ho))7 I($,” (to) !I2 + fw (tl”)j2 = 1 (5.2) 

P r o of. Consider a sequence of trajectories sip (t), t, < t < t,, optimal in the 
approximating problems (1.5). (1.6), (2. l), and the corresponding sequence of conjugate 
trajectories Sk0 (t)r ta < t < tr, satisfying the conditions (3.1) - (3,3) k = 1, 2, . . . 
(Theorem 3.1 guarantees the existence of such functions). We shall assume that theftmc- 
tions ZIP (t), and qk” (t), k = 1, 2, . . . are prolonged continuously to the whole Inter- 
val [t,, tlo]. From the condition (3.3) it follows that 

II~lk0(tO)1)2+Ij~~(tlk)1)2= 1, k=l,2,... (5.3) 

In analogy with the proof of Theorem 2.1, we can conclude that the sequence {$c (t)}, 
t, < t < tlo is relatively compact in the space C Lt,, tlul. Let us isolate from the 

sequence’ {zip (t), Sk0 (t) 1, t, < t < tlo, k = 1, 2; . . . , a uniformly convergent 
subsequence the limit {x0 (t), $” (t))} of which is a function absolutely continuous on 
It,, t,“l. 

From (2.2), (3.3), (5.3) and the definition of the conjugate cone KG it follows direct- 
ly that the limit functions 9 (t), $” (t), t, < t < t,‘, satisfy the boundary conditions 
(1.3), (5.2). Using the convexity of the set 

n+1 
Q (3, 9, t) = ((41, 42) E R2*: 41 = ? aif (2, +r 0, 

i=l 

q2 = rgI1ai dH (5, $9 ui3 t, / aZ9 % > O9 ui CF u(t), riI1 ai = I} 

and the conditions (a) -(c), we can show [8] that measurable functions ai” (t), uio (t), 
i = 1, . . ., n + 1, can be found which satisfy, together with the limits z’(t), 9” (t), 
1, < t < tla s the conditions (1.5), (1.6), (3.1). 
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Thus the set (2 (t), ai (t), uio (t), i = 1, . . . , 12 -:- I), I, < t < 1,’ is a 

generalized solution of the initial problem (1.1) - (1.4). To complete the proof we must 

show that the functions S? (t), 9” (t) UT (t), i = 1, . . ., n + 2 satisfy,for almost 
every i E [t,, r,f , the~maximum condition (5.1). 

We introduce the notation 

n+-1 
lim h,“(t) = h*(t) _I= 
k+m 
n-l-1 

r i&=1, q>o, uiEU(t), i=l,..., a-i-2 
i=l 

assuming that the whole sequence (zckO (L), qko (t)}, li = 1, 2, . . . converges uni- 
formly on It,, t,] to the limit {.z” (t), q” (t)). Using the relation (3.Q we can show 

that for almost every t ES ft,,, t,“l we have 
7>+1 

h;(t) = x %k”(O H (5;(t), *;(r), r&;(t), r), I; = 1) 2, . , . 
i=l (5.4) 

nf1 

From (5.4) we can conclude, in analogy with the proof of Theorem 3.1, that the control 

{ccio (t), uio (t), i = 1, . . ., 12 + I} satisfies the maximum condition (5.1) for al- 

most every t 6% Ti = {t E [to, t,OI: aio (t) # 0}, i = 1, , . , ra + 1. 

We remove the last constraint by considering the set 

V (t) = (VE u (r) : IIf (so (0, 9” (% 2’9 t) =;zgttf (x0 w, $” (0, u, t)) 

From the conditions (a) - (c) it follows that the set V (t) is nonempty for almost every 

t E [to, r,l and its graph I’v = {(u, t) E Q X It,, tcl, u E V (t)} isanana- 
lytic (mod 6) subset of the space Q Y it ,,, tlo]. Using the theorem of measurable sam- 

pling [S, S] we find the measurable function u* (t) E V (t), t, < t < LID and use it 
to replace the controls uiO (1) on the sets ft,, t,“~ \ Ti, i = I, . . ., n i_ 1. The 
control set ((xi0 (t), Ui” (t), i ^_ 1, . . ., a + 1 }, t, < t < t,’ modified in this 
manner, satisfies the maximum principle (5.1) for almost every t E It,,, tl”] and 
generates the same trajectories 9 (t) and 9” (t) by virtue of the systems (1.5) and(3.1). 

This completes the proof of the theorem. 
From Theorem 5.1 follows the maximum principle for the problem of the time opti- 

mal response with smooth convex constraints, and the result due to Clarke [13] for the 
similar problems of optimal control (with fixed time) in which the conjugated cone & 
is replaced, under the conditions of transversality (5.2), by its convex closure (normal 
cone in the Clarke’s sense). The Clarke’s method consists of reducing the initial prob- 
lem (1.1) - (1.4) to the generalized biconvex Bolza problem which was investigated in 

[14] by the methods of convex analysis. Additional assumptions on the “calmness” of the 
initial problem arise in the course pursued by the above method, which are absent from 

the approximation method proposed in this paper. 
The proof of Theorem 5.1 offers a glimpse into the possibility of obtaining the condi- 

tion of the fundamental result (the condition of transversality (5.2)) on account of arbi- 
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trary nonempty contraction of the set M (s) in the course of constructing the conjugate 
cone (4.1),(4.2). 
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